15 research outputs found

    Different Impacts of Cardiovascular Risk Factors on Oxidative Stress

    Get PDF
    The objective of the study was to evaluate oxidative stress (OS) status in subjects with different cardiovascular risk factors. With this in mind, we have studied three models of high cardiovascular risk: hypertension (HT) with and without metabolic syndrome, familial hypercholesterolemia (FH) and familial combined hyperlipidemia (FCH) with and without insulin resistance. Oxidative stress markers (oxidized/reduced glutathione ratio, 8-oxo-deoxyguanosine and malondialdehide) together with the activity of antioxidant enzyme triad (superoxide dismutase, catalase, glutathione peroxidase) and activation of both pro-oxidant enzyme (NAPDH oxidase components) and AGTR1 genes, as well as antioxidant enzyme genes (CuZn-SOD, CAT, GPX1, GSR, GSS and TXN) were measured in mononuclear cells of controls (n = 20) and patients (n = 90) by assessing mRNA levels. Activity of some of these antioxidant enzymes was also tested. An increase in OS and pro-oxidant gene mRNA values was observed in patients compared to controls. The hypertensive group showed not only the highest OS values, but also the highest pro-oxidant activation compared to those observed in the other groups. In addition, in HT a significantly reduced antioxidant activity and mRNA induction of antioxidant genes were found when compared to controls and the other groups. In FH and FCH, the activation of pro-oxidant enzymes was also higher and antioxidant ones lower than in the control group, although it did not reach the values obtained in hypertensives. The thioredoxin system was more activated in patients as compared to controls, and the highest levels were in hypertensives. The increased oxidative status in the presence of cardiovascular risk factors is a consequence of both the activation of pro-oxidant mechanisms and the reduction of the antioxidant ones. The altered response of the main cytoplasmic antioxidant systems largely contributes to OS despite the apparent attempt of the thioredoxin system to control it

    The nutrigenetic influence of the interaction between dietary vitamin E and TXN and COMT gene polymorphisms on waist circumference: a case control study

    Get PDF
    Journal Article; Research Support, Non-U.S. Gov't;BACKGROUND Abdominal obesity (AO) is a common modifiable risk factor for certain non-communicable diseases associated with enhanced oxidative stress (OS). The objective of this work was to investigate whether the interaction between antioxidant vitamin intake and OS-related polymorphisms modulates gene-associated anthropometry in a Spanish population. METHODS A total of 246 subjects with AO, and 492 age and gender matched non-AO subjects were included in the study. Anthropometric, biochemical, and OS parameters, and antioxidant dietary intake data were assessed using validated procedures. DNA from white blood cells was isolated and the genotype of seven polymorphisms from genes involved in OS (pro-oxidant and antioxidant) were analyzed using the SNPlex system. The effects of the c.-793T > C polymorphism on promoter activity and thus thioredoxin (TXN) activity were examined using reporter assays. RESULTS The AO group had higher 8-Oxo-2'-deoxyguanosine levels and took in less vitamin A and vitamin E compared to the non-AO group. Logistic regression analysis revealed that the rs2301241 polymorphism in TXN and rs740603 in catechol-O-methyltransferase (COMT) were associated with waist circumference (WC) and AO. Moreover, these polymorphisms were more strongly associated with variations in WC in subjects with low vitamin E intakes. A promoter assay revealed that the T to C conversion at c.-793 (rs2301241) induced a more than two fold increase in reporter gene expression. CONCLUSIONS WC is associated both with dietary vitamin E intake and genetic variants of TXN and COMT suggesting that existence of a complex nutrigenetic pathway that involves regulation of AO.This work was co-funded with European Funds for Regional Development (FEDER), the Spanish Science and Technology Ministry [SAF2005-02883]; the health research fund from the Carlos III Health Institute [PI070497], CIBER Fisiopatología Obesidad y Nutrición (CIBERobn) [CB06/03], and CIBER de Diabetes y Enfermedades Metabólicas Relacionadas (CIBERDEM). CIBEROB and CIBERDEM are initiatives by the Carlos III Health Institute in Madrid and the Spanish Health Ministry. Funding also came from GRUPOS 03/101, PROMETEO/2009/029 and 2005/027, AMP07/075, and ACOMP/2009/201 from the Valencian Government and European Network of Excellence InGenious HyperCare (EPSS-037093) from the European Commission.Ye

    Ghrelin attenuates hepatocellular injury and liver fibrogenesis in rodents and influences fibrosis progression in humans

    Get PDF
    El pdf del artículo es la versión pre-print.-- et al-There are no effective antifibrotic therapies for patients with liver diseases. We performed an experimental and translational study to investigate whether ghrelin, an orexigenic hormone with pleiotropic properties, modulates liver fibrogenesis. Recombinant ghrelin was administered to rats with chronic (bile duct ligation) and acute (carbon tetrachloride) liver injury. Hepatic gene expression was analyzed by way of microarray analysis and quantitative polymerase chain reaction. The hepatic response to chronic injury was also evaluated in wild-type and ghrelin-deficient mice. Primary human hepatic stellate cells were used to study the effects of ghrelin in vitro. Ghrelin hepatic gene expression and serum levels were assessed in patients with chronic liver diseases. Ghrelin gene polymorphisms were analyzed in patients with chronic hepatitis C. Recombinant ghrelin treatment reduced the fibrogenic response, decreased liver injury and myofibroblast accumulation, and attenuated the altered gene expression profile in bile duct-ligated rats. Moreover, ghrelin reduced the fibrogenic properties of hepatic stellate cells. Ghrelin also protected rats from acute liver injury and reduced the extent of oxidative stress and inflammation. Ghrelin-deficient mice developed exacerbated hepatic fibrosis and liver damage after chronic injury. In patients with chronic liver diseases, ghrelin serum levels decreased in those with advanced fibrosis, and ghrelin gene hepatic expression correlated with expression of fibrogenic genes. In patients with chronic hepatitis C, polymorphisms of the ghrelin gene (994CT and 604GA) influenced the progression of liver fibrosis. Conclusion: Ghrelin exerts antifibrotic effects in the liver and may represent a novel antifibrotic therapy. Copyright © 2010 by the American Association for the Study of Liver Diseases.Supported by grants from the Ministerio de Ciencia e Investigación (SAF2005-06245), from the Instituto de Salud Carlos III (FIS2005-050567, FIS 2008-PI08/0237 and PI070497), and from the European Community FP6 (LSHB-CT-2007-036644 - DIALOK) and by fellowships from Institut d’Investigacions Biomèdiques August Pi i Sunyer (to M. M. and M. D.), the Fundación Bilbao Vizcaya Argentaria (to M. D.) and the Fundació Clínic (to P. S. B.).Peer Reviewe

    Common Variants of the Liver Fatty Acid Binding Protein Gene Influence the Risk of Type 2 Diabetes and Insulin Resistance in Spanish Population

    Get PDF
    SummaryThe main objective was to evaluate the association between SNPs and haplotypes of the FABP1-4 genes and type 2 diabetes, as well as its interaction with fat intake, in one general Spanish population. The association was replicated in a second population in which HOMA index was also evaluated.Methods1217 unrelated individuals were selected from a population-based study [Hortega study: 605 women; mean age 54 y; 7.8% with type 2 diabetes]. The replication population included 805 subjects from Segovia, a neighboring region of Spain (446 females; mean age 52 y; 10.3% with type 2 diabetes). DM2 mellitus was defined in a similar way in both studies. Fifteen SNPs previously associated with metabolic traits or with potential influence in the gene expression within the FABP1-4 genes were genotyped with SNPlex and tested. Age, sex and BMI were used as covariates in the logistic regression model.ResultsOne polymorphism (rs2197076) and two haplotypes of the FABP-1 showed a strong association with the risk of DM2 in the original population. This association was further confirmed in the second population as well as in the pooled sample. None of the other analyzed variants in FABP2, FABP3 and FABP4 genes were associated. There was not a formal interaction between rs2197076 and fat intake. A significant association between the rs2197076 and the haplotypes of the FABP1 and HOMA-IR was also present in the replication population.ConclusionsThe study supports the role of common variants of the FABP-1 gene in the development of type 2 diabetes in Caucasians

    DNA Hypermethylation of the Serotonin Receptor Type-2A Gene Is Associated with a Worse Response to a Weight Loss Intervention in Subjects with Metabolic Syndrome

    No full text
    Understanding the regulation of gene activities depending on DNA methylation has been the subject of much recent study. However, although polymorphisms of the HTR2A gene have been associated with both obesity and psychiatric disorders, the role of HTR2A gene methylation in these illnesses remains uncertain. The aim of this study was to evaluate the association of HTR2A gene promoter methylation levels in white blood cells (WBC) with obesity traits and depressive symptoms in individuals with metabolic syndrome (MetS) enrolled in a behavioural weight loss programme. Analyses were based on 41 volunteers (mean age 49 ± 1 year) recruited within the RESMENA study. Depressive symptoms (as determined using the Beck Depression Inventory), anthropometric and biochemical measurements were analysed at the beginning and after six months of weight loss treatment. At baseline, DNA from WBC was isolated and cytosine methylation in the HTR2A gene promoter was quantified by a microarray approach. In the whole-study sample, a positive association of HTR2A gene methylation with waist circumference and insulin levels was detected at baseline. Obesity measures significantly improved after six months of dietary treatment, where a lower mean HTR2A gene methylation at baseline was associated with major reductions in body weight, BMI and fat mass after the treatment. Moreover, mean HTR2A gene methylation at baseline significantly predicted the decrease in depressive symptoms after the weight loss treatment. In conclusion, this study provides newer evidence that hypermethylation of the HTR2A gene in WBC at baseline is significantly associated with a worse response to a weight-loss intervention and with a lower decrease in depressive symptoms after the dietary treatment in subjects with MetS

    miR-1185-1 and miR-548q Are Biomarkers of Response to Weight Loss and Regulate the Expression of GSK3B

    No full text
    The aim of the present investigation was to identify putative miRNAs involved in the response to weight loss. Reverse-transcribed RNA isolated from white blood cells (WBCs) of a subpopulation from the Reduction of the Metabolic Syndrome in Navarra-Spain (RESMENA-S) study (low-responders (LR) and high-responders (HR)) was hybridized in a gene expression microarray. Moreover, miRNAs were sequenced by miRNA-Seq. It was found that miR-548q and miR-1185-1 were overexpressed in HR, both in the microarray and in the miRNA-Seq. A bioinformatic prediction of putative target genes of the selected miRNAs found that GSK3B, a putative target for miR-548q and miR-1185-1, was downregulated in HR. Particular 3′-UTR binding regions of GSK3B were cloned downstream of the firefly luciferase gene. HEK-293T cells were co-transfected with either 0.25 μg of empty pmiR-GLO or pmiR-GLO-548q-3′-UTR/pmiR-GLO-1185-1-3′-UTR, and 7.5 pmol of miR-548q/miR-1185-1 mimics, demonstrating that miR-1185-1 bound to the 3′-UTR region of GSK3B. THP-1 cells were transfected with either 20/40 nM of miR-548q/miR-1185-1 mimics, evidencing that miR-1185-1inhibited the expression of the gene when transfected at doses of 20/40 nM, whereas miR-548q inhibited GSK3B expression at a dose of 40 nM. As a conclusion, miR-548q and miR-1185-1 levels in WBCs are biomarkers of response to weight-loss diets and could be involved in the regulation of the proinflammatory gene GSK3B

    Oxidative stress in susceptibility to breast cancer: study in Spanish population

    Get PDF
    Background: Alterations in the redox balance are involved in the origin, promotion and progression of cancer. Inter-individual differences in the oxidative stress regulation can explain a part of the variability in cancer susceptibility. The aim of this study was to evaluate if polymorphisms in genes codifying for the different systems involved in oxidative stress levels can have a role in susceptibility to breast cancer. Methods: We have analyzed 76 single base polymorphisms located in 27 genes involved in oxidative stress regulation by SNPlex technology. First, we have tested all the selected SNPs in 493 breast cancer patients and 683 controls and we have replicated the significant results in a second independent set of samples (430 patients and 803 controls). Gene-gene interactions were performed by the multifactor dimensionality reduction approach. Results: Six polymorphisms rs1052133 (OGG1), rs406113 and rs974334 (GPX6), rs2284659 (SOD3), rs4135225 (TXN) and rs207454 (XDH) were significant in the global analysis. The gene-gene interactions demonstrated a significant four-variant interaction among rs406113 (GPX6), rs974334 (GPX6), rs105213 (OGG1) and rs2284659 (SOD3) (p-value = 0.0008) with high-risk genotype combination showing increased risk for breast cancer (OR = 1.75 [95% CI; 1.26-2.44]). Conclusions: The results of this study indicate that different genotypes in genes of the oxidant/antioxidant pathway could affect the susceptibility to breast cancer. Furthermore, our study highlighted the importance of the analysis of the epistatic interactions to define with more accuracy the influence of genetic variants in susceptibility to breast cancer

    Methylome-Wide Association Study in Peripheral White Blood Cells Focusing on Central Obesity and Inflammation

    No full text
    Epigenetic signatures such as DNA methylation may be associated with specific obesity traits in different tissues. The onset and development of some obesity-related complications are often linked to visceral fat accumulation. The aim of this study was to explore DNA methylation levels in peripheral white blood cells to identify epigenetic methylation marks associated with waist circumference (WC). DNA methylation levels were assessed using Infinium Human Methylation 450K and MethylationEPIC beadchip (Illumina) to search for putative associations with WC values of 473 participants from the Methyl Epigenome Network Association (MENA) project. Statistical analysis and Ingenuity Pathway Analysis (IPA) were employed for assessing the relationship between methylation and WC. A total of 669 CpGs were statistically associated with WC (FDR < 0.05, slope ≥ |0.1|). From these CpGs, 375 CpGs evidenced a differential methylation pattern between females with WC ≤ 88 and > 88 cm, and 95 CpGs between males with WC ≤ 102 and > 102 cm. These differentially methylated CpGs are located in genes related to inflammation and obesity according to IPA. Receiver operating characteristic (ROC) curves of the top four significant differentially methylated CpGs separated by sex discriminated individuals with presence or absence of abdominal fat. ROC curves of all the CpGs from females and one CpG from males were validated in an independent sample (n = 161). These methylation results add further insights about the relationships between obesity, adiposity-associated comorbidities, and DNA methylation where inflammation processes may be involved
    corecore